
Literate Programming in PAL and ObjectPAL

Lee Wittenberg

�

Tipton Cole & Company

3006 Bee Cave Road, Suite B-200

Austin, TX 78746

(512) 329{0060

leew@pilot.njin.net

January 16, 1995

1 Introduction

A quiet revolution is taking place in programming

circles|a revolution called \literate programming." In

1972, Edsger Dijkstra [1] wished for a \program written

down as I can understand it, I want it written down as I

would like to explain it to someone." Ten years later,

Donald Knuth developed the original WEB system, coining

the phrase \literate programming" in the process. Literate

programming is precisely what Dijkstra wanted: the ability

to write a program as you would explain it to another

human being, rather than as your compiler would have it.

2 Literate Programming

The literate programming philosophy is that a program

needs to be readable by both humans and computers, but

these two audiences have quite di�erent needs. Computers

need the program to have a fairly rigid syntax, usually with

names declared before their use. Human beings, on the

other hand, prefer a somewhat looser style, and often like

to see how a name is used before worrying about how it is

de�ned. Section headings, cross-references, charts, graphs,

footnotes, and the like are similarly helpful to humans, but

irrelevant to a computer. The best possible documentation,

therefore, will recognize the needs of both audiences.

A literate program, commonly called a web, consists of

alternating chunks of descriptive text and code. The

chunks are organized for the human reader. Usually, each

text chunk describes the following code chunk, and makes

full use of appropriate word processing techniques. Each

code chunk has a name, which can be used in other code

chunks to refer to that particular piece of code.

The code chunks can be extracted from the web and placed

in order suitable for a compiler (or interpreter). This

process is called tangling the web. The process of

typesetting the web to produce a human-readable

document is called weaving.

�

Current address: Computer Science Department, Kean College of

New Jersey, Union, NJ 07083.

3 Programming with noweb

I do all of my PAL and ObjectPAL programming using

noweb [4], a literate programming tool by Norman Ramsey.

A noweb program is a text �le, usually with a `.nw'

extension. Text chunks are introduced by the symbol `@' on

a line by itself, code chunks by a line containing the chunk's

name enclosed in a set of double angle brackets, `<<'

and `>>', followed by an equals sign. Figure 1 gives an

example of an extremely simple PAL web. Note the use of

@

This is a trivial example of a PAL

web. It displays a ``hello'' message

and then sleeps for a bit

before it's done.

<<*>>=

MESSAGE "Hello, world!"

SLEEP <<An appropriate interval>>

@

How long is appropriate?

Let's say 2000, for now.

<<An appropriate interval>>=

2000

Figure 1: A simple PAL web.

the code chunk <<An appropriate interval>> in the

de�nition of <<*>>.

Tangling in noweb is accomplished with the notangle

command. Assuming that the web in Figure 1 is in the �le

example.nw, the dos command

notangle example.nw > example.sc

tangles it. The output is redirected to create the �le

example.sc. Figure 2 shows the resulting script. By

default, tangling begins with the <<*>> chunk (it is possible

to specify a di�erent chunk on the command line). As

notangle copies this \root" chunk to its output, it replaces

each chunk name it encounters with the appropriate

de�nition, so SLEEP <<An appropriate interval>>

MESSAGE "Hello, world!"

SLEEP 2000

Figure 2: The result of tangling Figure 1

becomes SLEEP 2000 in the output, and the resulting

program is pretty much what you would expect.

But the real payo� comes with notangle's companion

program, noweave, which produces a beautifully formatted

version of the web, designed to be read by humans.

Figure 3 is the result. The text chunks are formatted in a

This is a trivial example of a PAL web. It displays

a \hello" message and then sleeps for a bit before

it's done.

h* 1i�

MESSAGE "Hello, world!"

SLEEP hAn appropriate interval 2i

Root chunk (not used in this document).

How long is appropriate? Let's say 2000, for now.

hAn appropriate interval 2i�

2000

This code is used in chunk 1.

Figure 3: Formatted output from Figure 1

roman font, with paragraphs properly indented. The code

chunks are set in a �xed-width typewriter font, with chunk

names in italics (and the << >> pairs replaced by h i). The

chunks are also cross-referenced : each chunk is numbered,

and has a footnote that tells where it is used, if at all.

Since this example is so short, there isn't much need for

cross-referencing, but this feature is invaluable in a web of

any size.

4 noweb in Action

The best way to understand what literate programming is

all about is to build a web. This article is actually a web

containing two programs: one in PAL 4.x, the other in

ObjectPAL. From a single source �le, litprog.nw, noweb

generated a typeset copy of this article, a PAL script, and

an ObjectPAL method.

Since the purpose of this article is to introduce the concept

of literate programming, and not to discuss interesting

Paradox programming tricks, I have chosen to implement a

fairly simple algorithm and to make the PAL script and the

ObjectPAL method do pretty much the same thing. Both

calculate dates of Easter for a given range of years, and

create a table|keyed to the year|containing the results.

The algorithm is from Knuth [2]. Since expressions and

identi�ers are pretty much the same in PAL and

ObjectPAL, the same variable names can be used for both

implementations. The algorithm-related code chunks

accompany the algorithm.

Let y be the year for which the date of Easter is

desired.

Step 1. Set g (y mod 19) + 1. Easter calculations

depend on a 19-year cycle. A year's place in this

cycle is called its \golden number."

hCalculate the golden number 1i�

golden_number = MOD(easter_year, 19)

+ 1

This code is used in chunk 9.

Note that, in place of the single letters y and g, I

use easter_year and golden_number as

identi�ers, preferring good programming style to

mathematical consistency. I use easter_year

instead of year, because the latter is a reserved

word in PAL 4.x.

Step 2. Set c by=100c + 1. This step determines the

century in which the year occurs (more or

less|this description isn't quite accurate for

years that are divisible by 100, but it will do).

Note that `b c' is mathematical notation for the

\oor" function.

hCalculate the century number 2i�

century = FLOOR(easter_year/100) + 1

This code is used in chunk 9.

Step 3. Set x b3c=4c � 12, and z b(8c+ 5)=25c � 5.

A couple of corrections are necessary due to

idiosyncracies in the Gregorian calendar. The

former, x, calculates the number of years

divisible by 4 in which there is no leap year, such

as 1900. The latter, z, is a special correction

designed to keep Easter in step with the moon's

orbit.

hCalculate necessary corrections 3i�

leap_year_correction

= FLOOR(3*century/4) - 12

lunar_correction

= FLOOR((8*century+5)/25) - 5

This code is used in chunk 9.

Step 4. Set d b5y=4c � x� 10. This tricky little

formula computes a date that falls on a Sunday.

hFind Sunday 4i�

sunday = FLOOR(5*easter_year/4)

- leap_year_correction

- 10

This code is used in chunk 9.

Step 5. Set e (11g + 20+ z � x) mod 30. If e = 25 and

the golden number g is greater than 11, or if

e = 24, increase e by 1. The \epact," e, is used

to calculate when a full moon occurs.

hCalculate the epact 5i�

epact = MOD(11*golden_number + 20

+ lunar_correction

- leap_year_correction,

30)

IF (epact = 25 AND golden_number > 11)

OR (epact = 24)

THEN

epact = epact + 1

ENDIF

This code is used in chunk 9.

Step 6. Set m 44� e. If m < 21 then set m m+ 30.

Easter is de�ned as \the �rst Sunday following

the �rst full moon which occurs on or after

March 21." This formula �nds the �rst full moon

after March 21.

hFind the full moon 6i�

full_moon = 44 - epact

IF full_moon < 21

THEN

full_moon = full_moon + 30

ENDIF

This code is used in chunk 9.

Step 7. Set n m + 7� ((d+m) mod 7). This formula

�nds the Sunday immediately after the

aforementioned full moon.

hFind Easter Sunday 7i�

easter_sunday = full_moon + 7

- MOD(sunday + full_moon, 7)

This code is used in chunk 9.

Step 8. If n > 31, the date is (n � 31) April; otherwise it

is n March.

hGet the month 8i�

IF easter_sunday > 31

THEN

easter_sunday

= easter_sunday - 31

easter_month = "April"

ELSE

easter_month = "March"

ENDIF

This code is used in chunk 9.

Putting it all together:

hCalculate the date of Easter 9i�

hCalculate the golden number 1i

hCalculate the century number 2i

hCalculate necessary corrections 3i

hFind Sunday 4i

hCalculate the epact 5i

hFind the full moon 6i

hFind Easter Sunday 7i

hGet the month 8i

This code is used in chunks 10 and 18.

The desired date is contained in the variables

easter_sunday, easter_month, and easter_year.

Aside: Notice that I've been working bottom-up rather

than top-down, �rst coding the algorithm steps, then

putting them together when all the steps have been coded.

This goes against all received wisdom about good

programming practice, but literate programming seems to

change some of the rules. The primary focus in a literate

program is explaining it to the reader. In a case like this,

where the algorithm already exists, it's much more natural

to develop a program as I have done, and easier for the

reader to understand, as well. However, when I don't have

an algorithm already prepared, I tend to write top-down,

using the chunks for old-fashioned stepwise re�nement, as

you shall see in the following.

4.1 A PAL 4.x Script

Rather than bother with any input, the PAL script builds a

table, easter1.db, that contains dates of Easter calculated

for the years 1950 through 2000. After creating the table,

the program iterates over the years, adding an entry to the

table for each year.

hEASTER.SC 10i�

hCreate the easter1.db table 12i

FOR easter_year FROM 1950 TO 2000

hCalculate the date of Easter 9i

hAdd the date to easter1.db 13i

ENDFOR

hClean up the workspace 11i

This code is written to �le EASTER.SC.

The -R option tells notangle which code chunk to begin

with, so the command

notangle -REASTER.SC litprog.nw > easter.sc

extracts the PAL script, creating the EASTER.SC �le.

The easiest way to clean up is to issue the RESET command.

It has the disadvantage of removing anything that was on

the workspace before the script started, but will do for this

simple example.

hClean up the workspace 11i�

RESET

This code is used in chunk 10.

4.1.1 Creating the table

The easter1.db table will have three �elds: year, month,

and day. Month and day represent the date of Easter for

the speci�ed year, which naturally enough, is the key �eld.

Year and day are both numeric (short numbers will do),

while month is alphanumeric (5 characters will su�ce as

Easter occurs only in March or April).

The program has to put the table's image on the workspace

and get into Coedit mode before adding entries. Since

many table operations require subsidiary variables, which

may need initialization, the hAny other initializations

needed for easter1.dbi chunk is useful for writing

initialization code wherever in the web is most appropriate,

yet insuring that the initialization is performed

immediately after the table is created.

hCreate the easter1.db table 12i�

CREATE "easter1"

"Year" : "S*",

"Month" : "A5",

"Day" : "S"

hAny other initializations needed for easter1.db 14i

COEDIT "easter1"

This code is used in chunk 10.

4.1.2 Adding an Easter date to the table

APPENDARRAY appears to be the simplest technique PAL 4.x

provides for adding records to a table.

hAdd the date to easter1.db 13i�

newdate[2] = easter_year

newdate[3] = easter_month

newdate[4] = easter_sunday

APPENDARRAY newdate

This code is used in chunk 10.

Unlike simple variables, the newdate array must be

declared before it is used. Its �rst element refers to the

easter1.db table.

hAny other initializations needed for easter1.db 14i�

ARRAY newdate[4]

newdate[1] = "easter1"

This de�nition is continued in chunk 15.

This code is used in chunk 12.

4.1.3 A minor problem

Unfortunately, PAL 4.x does not provide a FLOOR function,

although ObjectPAL does. Since the Easter algorithm

never passes a negative number to FLOOR, the INT function

provides a cheap substitute.

hAny other initializations needed for easter1.db 14i+�

PROC FLOOR(n)

RETURN INT(n)

ENDPROC

Aside: Notice the +� in this chunk de�nition. noweave

uses this to indicate that the chunk has already been

de�ned, and that the code in this de�nition will be

concatenated with the code from previous de�nitions when

the web is tangled.

4.1.4 PAL wrapup

The PAL script is now complete. Although simple, it

demonstrates the literate programming style quite well.

Each piece of the script is small and easy to understand.

Each non-trivial part of the program is relegated to a

chunk, whose name is usually a complete sentence. Since

chunk names are typographically distinct from the actual

code, they are much easier to read than procedure names

would be. In addition, there is no run-time overhead

involved in using chunks, as there would be if I had used

procedures for re�nements.

Each chunk is accompanied by a complete description of

what the chunk does, including explanations of why things

were (or weren't) done in a particular way. Observations

that would be intrusive in standard program comments �t

quite well in these descriptions. The program is organized

for the human reader, not the compiler.

4.2 An ObjectPAL Method

noweb is language-independent; it doesn't care whether you

are programming in PAL, ObjectPAL, or even Pascal or C.

notangle's -R option makes it possible to include programs

written in several di�erent languages in a single web.

1

As I

mentioned earlier (Section 4), with a little bit of care, it is

possible to share code between PAL and ObjectPAL

applications. If it is necessary to maintain both a dos and

Windows version of a program, putting them in the same

web will help keep them \in sync," making it much less

likely that any changes will render the two versions

incompatible.

A useful technique in ObjectPAL is to write a program as a

pushButton method, linking its execution to a button on

some form. I create such a method here, assuming that it

will be attached to a button labelled \Generate Easter

Table" on some form.

I use the .txt extension for ObjectPAL �les, because that's

what the Paradox for Windows \EditjPaste From File"

menu item seems to prefer.

1

This is particularly useful when a program is to be invoked by one

or more batch �les. The batch �les can be in the same web as the

program they invoke, and can be easily updated whenever necessary

due to program changes.

hEASTER.TXT 16i�

METHOD pushButton(VAR eventInfo Event)

VAR

hLocal pushButton variables 17i

ENDVAR

hGenerate the easter2.db table 18i

ENDMETHOD

This code is written to �le EASTER.TXT.

In ObjectPAL, all variables have to be declared. If the web

didn't also contain a PAL 4.x script, I would have declared

these variables as they made their appearence in the

algorithm. Since I didn't do it then, I'd better do it now.

The variables are declared to be of type Number (except for

easter_month, which is a String), rather than SmallInt

or LongInt, because for some inexplicable reason,

ObjectPAL gets upset

2

when one tries to assign the result

of FLOOR to an integer variable (even though the result

must be integral).

hLocal pushButton variables 17i�

easter_year Number

easter_month String

easter_sunday Number

golden_number Number

century Number

leap_year_correction Number

lunar_correction Number

sunday Number

epact Number

full_moon Number

This de�nition is continued in chunk 21.

This code is used in chunk 16.

Since the form can take care of all necessary input,

FirstYear and LastYear will control the FOR loop, rather

than the \hard-coded" years 1950 and 2000, and I assume

that the form will contain Field objects with these names.

Alternatively, it may provide them as global variables that

are initialized somehow before pushButton is invoked, or as

symbolic constants. In any event, this is the form's

responsibility.

Not surprisingly, the control ow is similar to that of the

PAL script.

hGenerate the easter2.db table 18i�

hCreate the easter2.db table 20i

FOR easter_year FROM FirstYear TO LastYear

hGive other Windows programs a chance to run 19i

hCalculate the date of Easter 9i

hGive other Windows programs a chance to run 19i

hAdd the date to easter2.db 23i

ENDFOR

hGive other Windows programs a chance to run 19i

hClean up the desktop 22i

This code is used in chunk 16.

2

At least it used to; I don't know about 5.0.

The only surprise here is the hGive other Windows programs a

chance to runi chunk, which is scattered all over the place.

Windows is a \cooperative multitasking" system, so each

application must voluntarily give up control of the CPU

from time to time, to let other applications run. Since

ObjectPAL doesn't do this automatically, I like to give

other programs a chance whenever possible. I use a smaller

font for this chunk name so that it's fairly unobtrusive, and

doesn't interfere with the program proper.

hGive other Windows programs a chance to run 19i�

sleep()

This code is used in chunk 18.

There's no general desktop cleanup necessary yet; I'll add

cleanup code as it becomes necessary.

4.2.1 Creating the table

It appears that the only way to create a table in

ObjectPAL is to use the create pseudo-method with a

Table variable. However, only a TCursor can actually add

records to a table. There doesn't seem to be any getting

around the fact that two variables are needed for what

should be a one variable job.

The easter2.db table has the same structure as

easter1.db, described in Section 4.1.1.

hCreate the easter2.db table 20i�

dummy = create "easter2.db"

with

"Year" : "S",

"Month" : "A5",

"Day" : "S"

key "Year"

endcreate

easter_table.open("easter2.db")

easter_table.edit()

This code is used in chunk 18.

Since the Table variable is never used for anything other

than the initial creation, \dummy" seems an appropriate

name.

hLocal pushButton variables 17i+�

dummy Table

easter_table TCursor

The easter_table must be closed when the method ends

to make sure the last record added gets posted to the table.

hClean up the desktop 22i�

easter_table.close()

This code is used in chunk 18.

4.2.2 Adding an Easter date to the table

Adding records to a table in ObjectPAL is straightforward:

insert a new record, and assign the appropriate values to

the appropriate �elds.

hAdd the date to easter2.db 23i�

easter_table.insertRecord()

easter_table."Year" = easter_year

easter_table."Month" = easter_month

easter_table."Day" = easter_sunday

This code is used in chunk 18.

4.2.3 ObjectPAL wrapup

Now that the ObjectPAL method is complete, note that

the only di�erences between it and the PAL script of

Section 4.1 are syntactic.

4.3 Version Control Information

Since a noweb program is a text �le, version control

information can easily be included in the woven output.

This information is updated automatically, whenever the

program is \checked in." The following is the relevant

information for the programs in this article.

File: litprog.nw

Author: LEEW

Revision: 2.2

Last Modi�ed: 1995/01/16 11:19:51

4.4 List of Chunk Names

noweb can automatically generate an index of chunk names

used in the web, and the pages on which they are de�ned

and used. References to chunk de�nitions are underlined.

hAdd the date to easter2.db 23i 18, 23

hAdd the date to easter1.db 13i 10, 13

hAny other initializations needed for easter1.db 14i 12,

14, 15

hCalculate necessary corrections 3i 3, 9

hCalculate the century number 2i 2, 9

hCalculate the date of Easter 9i 9, 10, 18

hCalculate the epact 5i 5, 9

hCalculate the golden number 1i 1, 9

hClean up the desktop 22i 18, 22

hClean up the workspace 11i 10, 11

hCreate the easter2.db table 20i 18, 20

hCreate the easter1.db table 12i 10, 12

hEASTER.SC 10i 10

hEASTER.TXT 16i 16

hFind Easter Sunday 7i 7, 9

hFind Sunday 4i 4, 9

hFind the full moon 6i 6, 9

hGenerate the easter2.db table 18i 16, 18

hGet the month 8i 8, 9

hLocal pushButton variables 17i 16, 17, 21

hGive other Windows programs a chance to run 19i 18, 19

4.5 List of Identi�ers

noweb can also keep track of identi�er de�nitions and usage.

century: 2, 3, 17

dummy: 20, 21

easter_month: 8, 13, 17, 23

easter_sunday: 7, 8, 13, 17, 23

easter_table: 20, 21, 22, 23

easter_year: 1, 2, 4, 10, 13, 17, 18, 23

epact: 5, 6, 17

eventInfo: 16

FLOOR: 2, 3, 4, 15

full_moon: 6, 7, 17

golden_number: 1, 5, 17

leap_year_correction: 3, 4, 5, 17

lunar_correction: 3, 5, 17

newdate: 13, 14

pushButton: 16

sunday: 4, 7, 17

5 Producing Formatted Output

The noweave program, discussed in Section 3, does not

produce its formatted output directly. It produces a �le

that is then processed by the T

E

X

3

typesetting system.

T

E

X is the typesetting system of choice for literate

programming systems for a variety of reasons:

1. T

E

X is readily available. Implementations exist for

pretty much every computer in existence, and are

usually available free of charge. I use the excellent

emT

E

X implementation for dos, by Eberhard Mattes,

which is freely distributable.

2. T

E

X is portable. It is designed to be as

machine-independent as possible. Output generated by

emT

E

X on my PC and that generated by, say, a unix

implementation will be identical.

3. T

E

X is stable. Before a program can be certi�ed

\T

E

X," it must pass a rigorous test suite called the

\trip test." Since T

E

X is not a commercial product, it

is not subject to the whims of a manufacturer.

4. The quality of T

E

X output is signi�cantly better than

that of any commercial word processor or desktop

publisher on the market today.

3

\Insiders pronounce the � of T

E

X as a Greek chi, not as an `x',

so that T

E

X rhymes with the word blecchhh. It's the `ch' sound in

Scottish words like loch or German words like ach; it's a Spanish `j'

and a Russian `kh'. When you say it correctly to your computer, the

terminal may become slightly moist." [3]

On the other hand, there is no reason a literate

programming system has to use T

E

X. A number of

non-T

E

X systems exist, and many are suitable for

programming in PAL and ObjectPAL (see Section 6).

6 Availability

Although it is not in the public domain, noweb is freely

distributable|this article (and the programs it generates)

were created using the dos implementation. Other literate

programming systems suitable for PAL and ObjectPAL are

also available. FunnelWeb and Nuweb are T

E

X-based; CLiP

can be used with any word processor; and WinWordWEB

is a collection of macros that provide a simple literate

programming environment in Word for Windows. All of

these systems are freely distributable.

If you would like to �nd out more about literate

programming, I recommend that you subscribe to the

\LitProg" discussion group on the Internet. All discussion

is via electronic mail, so it should be possible to subscribe

from CompuServe, or any other service that can send and

receive Internet mail. To subscribe, send a message to

LitProg-Request@SHSU.edu

4

, and include

SUBSCRIBE LitProg "your name"

in the body of the message. As the o�cial welcoming notice

says, \Novices are welcome; it is intended that this group

should be a place where newcomers can be welcomed into

the fold as well as a place where seasoned literate

programmers can discuss �ne points of technique."

7 Discussion

In the introduction, I stated that literate programming is

revolutionary. It is not \the only game in town," though.

The \visual programming" revolution is also gaining

ground. Although visual programming is receiving the

lion's share of publicity, I believe that literate programming

is much more signi�cant for the professional programmer.

Visual programming, like BASIC before it, is designed for

the neophyte. Writing a program is easier than ever before.

However, just as BASIC's GOTO statement led to \spaghetti

code" that was impossible to maintain, visual programming

systems create their own maintenance problems. In

Paradox for Windows, for example, the connections

between objects are invisible, creating the potential for

spaghetti of another kind. Objects can refer to other

objects in many ways, and there is no way|short of

examining every object|to determine whether a non-local

identi�er (e.g. FirstYear and LastYear in Section 4.2) is a

variable, constant, or graphical object, and where in the

\container hierarchy" it resides. Maintaining such a system

can become a nightmare.

4

CompuServe users should prepend \>INTERNET:" to this address.

Literate programming, on the other hand, is not for the

beginner. The literate programmer must be pro�cient in at

least two languages: a programming language, like PAL or

ObjectPAL, and a text formatting language, like T

E

X or a

commercial word processor. Since the bulk of a web is

explanation, rather than code, the programmer has to take

the time to think through the program in order to be able

to explain it. As in any programming methodology, time

spent in thought \up front" translates into reduced

debugging and easier maintenance. What literate

programming adds to the mix is that the programmer's

thoughts no longer disappear into thin air once the

program is written; they are preserved in the web. The

programmer who maintains the web has these thoughts as a

foundation for future work. For the professional

programmer,maintenance is everything. A literate program

is a maintainable program.

But, above all, literate programming is fun. The tedium of

rearranging bits of code to cater to a compiler is gone. In

its place is a process of discovery. As you write your

explanations, the code unfolds naturally, as if it had always

been there and you just now happened to �nd it. The

phenomenon of \code that seems to write itself" is common

among literate programmers, as is the practice of passing

programs around for comments|and actually getting them!

I could go on and on. Literate programming techniques free

the programmer to focus on the uniquely human aspects of

programming, leaving the computer to perform the more

mundane tasks. The bene�ts are there for the taking. Take

them.

References

[1] Edsger W. Dijkstra. Notes on structured programming.

In Structured Programming, pages 1{82. Academic

Press, 1972.

[2] Donald E. Knuth. Fundamental Algorithms, volume 1 of

The Art of Computer Programming. Addison-Wesley,

second edition, 1973.

[3] Donald E. Knuth. The T

E

Xbook, volume A of

Computers & Typesetting. Addison-Wesley, 1986.

[4] Norman Ramsey. Literate programming simpli�ed.

IEEE Software, pages 97{105, September 1994.

